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The use of continuum models for the analysis of discrete built-up complex aerospace struc-

tures is an attractjve idea especially at the conceptual and Preliminary design stages. But

prevented them from finding wide applications. In thjg regard, Artificia] Neura] Networks

(ANN or NN) may have great potential as thege networks are universa] approximators

The ultimate ajm of the present work is to be able to build high fidelity continyum models
for complex aerospace structures using the ANN. As a first step, the concepts and featyreg

of ANN are familarized through the MATLAB NN Toolbox by simulating some represen-



1. Introduction

It is estimated that about 909 of the cost of an aerospace product is committed
during the first 10% of the design cycle. Ag a result, the aerospace industry is increasingly
coming to the conclusion that physics-based high fidelity models (Finite Element Analysis

for structures, Computationa] Fluid Dynamics for aerodynamic loads etc.) need to be used

But an obstacle to using the high fidelity models at the conceptual level is the high CPy
time that are typically needed for these models, despite the €normous progress that has

been made in both the computer hardware and software.

During the late Seventies and early eighties, there was 5 significant interest in
obtaining continuum models to represent discreet built-up complex lattice, wing, and

laminated wing structures, These models use very few parameters to express the original



scratch.

The complex nature of the various methods and the large number of problems
encountered in determining the equivalent models are not surprising given the fact that
determining these models for 4 given complex structure (a large space étructure or a wing)
belongs to a class of problems called inverse problems. These problems are inherently ill-
posed and it is fruitless to 'attempt to determine unique continuum models, The present
work deals with investigating the possibility that a more rational and efficient approach

of determining the continyum models can be achieved by using artificial neural networks.

The working mechanism in brains of biologica] creatures has long been an area of
intense study. It was found around the first decade of this century that neurons (nerve
cells) are the structura] constituents of the brain. The neurons interact with each other
through synapses, and are connected by azons (transmitting lines) and dentrites (receiv-
Ing branches). It is estimated that there are on the order of 10 billion neurons in the
human cortex, and about 60 trillion synapses (Ref. 1). Although neurons are 9~6 orders
of magnitude slower than silicon logic gates, the organization of them is such that the
brain has the capability of performing certain tasks; (for example, pattern recognition, and
motor control etc.) much faster than the fastest digital computer nowadays. Besides, the
energetic efficiency of the brain is about 10 orders of magnitude lower than the best com-
puter today. So it can be said, in the sense that a computer is an information—processing

system, the brain is a highly complex, nonlinear, and efficient parallel computer.

Artificial Neural Networks (ANN), or simply Neural Networks (NN) are compu-
tational systems inspired by the biological brain in their structure, data processing and
restoring method, and learning ability. More specifically, a neural network is defined as

a massively parallel distributed processor that has a natural propensity for storing ex-
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periential knowledge and making it available for future use by resembling the brain in
two aspects: (a) Knowledge is acquired by the network through a learning process; (b)
Inter-neuron connection strengths known as synaptic weights (or simply weights) are used

to store the knowledge (Ref. 1).

With a history traced to the early 1940s, and two periods of major increases in

be a mature branch in the computational science and engineering with a large number
of publications, a lot of quite different methods and algorithms and many commercial
software and some hardware. They have found niumerous applications in science and
engineering, from biological and medjca] sciences, to information technologies such as
artificial intelligence, pattern recognition, signal processing and control, and to engineering

areas as civil and structura) engineering.

In this report a brief description is given to the most extensively used neural net-
work in civil and structural engineering, Multi-Layer Feed-Forward NN, and another kind
of NN, Radial Basis Function NN » Which is very efficient jp Some cases. Some concep-
tional features of NN are listed. Some examples of the application of neural network are
given, among which several are published real problems in civil and structural engineer-
ing. Based on our experience of using the MATLAB NN Toolbox, some important and

Very practical issues on the application of NN will be brought out.

Then a section of the report is dedicated to the development of algorithms car-
rying out the very useful concept of cross-validation. Through the results for several
examples obtained from the algorithms, some observations on issues such as over-training

and network complexity are given.



In the last section an example of using NN in continyum models is given. A lattice
structure with repeating cells is represented by a continuum beam whose properties, as

functions of the repeating cell particulars, are provided by neural networks,

2. Examples of NN

As simplified models of the biological brain, ANNs have lots of variations due
to specific requirements of thejr tasks by adopting different degree of network complex-
ity, type of inter-connection, choice of transfer function, and even differences in training

method.

According to the types of network, there are Single Neuron network (1-input 1-
output, no hidden layer), Single-Layer NN or Percepton (no hidden layer), and Multi-
Layer NN (1 or more hidden layers). According to the types of inter-connnection, there
are Feed-Forward network (values can only be sent from neurons of a layer to the next
layer), Feed-Backward network (values can only be sent in the different direction, i.e,
from the present layer to the previous layer), and Recurrent network (values can be sent

in both directions).

In the following a brief description is given to two kinds of extensively used neura]

networks and some of the pertinent concepts.

2.1 Feed-Forward Multi-layer Neural N etwork

As shown in Fig. 1(a), in the J-th layer, the i-th neural has inputs from the

(7 — 1)-th layer of value 7k = 1,..,7m5_1), and has the following output

ol = f(r})

T



where
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in which w];? is the weight between node k of the (7 = 1)-th layer and node 7 of the J-th

layer, and b,’ 1s the bias (also called threshold). The above relation can also be written as

le_l
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where 2)7'=-1 and wii = b,

The transfer function (also called activation function or threshold function)

ally specified as the following Sigmoid function

is usu-

1
l+4+e1’

flr) =

Other choices of the transfer function can be the hyperbolic tangent function

l—-e"

f(r) = 14er
the piecewise-linear function

1, r > 0.5;

flr)=4¢r+05 -05 <r<0.5

0, r <-0.5.

and, sometimes, the ’pure’ lineqr function
) =r.

These transfer functions are displayed in Fig. 1(b).

2.2 Radial Basis Function Neural Network
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Radial Basis Function (RBF) NN usually have one input layer, one hidden layer

and one output layer, as shown in Fig. 2.

For the RBF network, Fig. 2, we have the relations between the input z! (here

i=1,..,n; ) and the output z2 (here k=1,...,n3) as follows.

where w?, b2 are the weights and bias respectively, and the Gaussign function is used as

the transfer function:

Glz;, wj,b) ) = ezp(=[b,;1%[z} - wl]?)

where w! is the center vector of the input data, and ! is the variance vector,

3. Features of ANN

Some important features of NN are briefed as follows.

(learning) — simulation (recalling).
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(1) Choosing structural and initial parameters (number of layers, number of neurons of
each layer, and initial values of weights and thresholds, and the kind of transfer function)
is usually from experiences of the user and sometimes can be provided by the algorithms.
(2) The training process uses given input and output data sets to determine the optimal
combination of weights and thresholds. It is the major and the most time-consuming part
of NN modeling, and there are lots of methods regarding different types of NN,

(3) Simulation means using the trained NN to predict output according to new inputs

(This corresponds to the recall’ function of the brain).

® The input and output relationship of NN is highly nonlinear. This is mainly
introduced by the nonlinear transfer function. Some networks, e.g. the so-called ” abduc-
tive” networks, use double even triple powers besides linear terms in their layer to layer

input-output relations (Ref. 6).

e A NN is parallel in nhature, so it can make computation fast. Neural networks
are ideal for implementation in parallel computers. Though NN is usually simulated in

ordinary computers in a sequential manner.

® A NN provides general mechanisms for building models from data, or give a
general means to set up input-output mapping. The input and output can be continuous

(numerical), or not continuous (binary, or of patterns).

* Training a NN is an optimization process based on minimizing some kind of
difference between the observed data and the predicted while varying the weights and
thresholds. For numerical modeling, which is of our major concern for the present study,
there is a great similarity between NN training and some kind of least-square fitting or

interpolation.



® Where and when to use NN depend on the situation, and NN is not a panacea.
The following comment op NN application on structural engineering seemingly can be

generalized in other areas:

4. Algorithms in the MATLAB Neural Network
Toolbox

When using MATLAB NN Toolbox, one should first choose the number of input and
output variables. This is accomplished by specifying the two matrices P and t; where p is

4 mXn matrix; m is the number of input variables, and 7 the number of sets of training

[wl,b1,w2,52, w3,b3/=initff(p,n1, logsig’ n2, logsig’ t, logsig’);

where w1, w2 w9 are initial values for the weight matrices of the Ist (hidden), 2nd
(hidden) and 3rd (output) layer respectively, b1, b2, b8 are the bias (threshold) vectors,

nl and n2 the number of neurons in the 1st and 2nd hidden layer respectively, and logsig’
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means that the Sigmoid transfer function is used.

The present version of MATLAB NN Toolbox ¢an support only 2 hidden layers, but
the number of neurons is only limited by the available memory of the computer System
being used. For the transfer function, one can also use other choices, such as ‘tansig’

(hyperbolic tangent sigmoid), ‘radbas’ (radial basis) and ‘purelin’ (linear) etc.

Experiences of using initff indicated that it séems to be a random process since
it is found that the result of the execution of this algorithm each time is different. And
other conditions kept the Same, two execution of this function usually give quite different
converging histories of training by the training algorithm (see Fig. 3 (a) and (b)). We

shall discuss this later in 6.3.

Shown in the following is the MATLAR algorithm for training feed-forward network

with back-propagation:
[w1,b1,w8, b2,w3,b3, ep,trj:trainbp( wl,bl, logsig’, w2, b2, logsig’, w3,b3, logsig WBtitp);

where most of the parameters which the user should take care of have been mentioned
in the above paragraphs. The only set of parameters that the user sometimes need to

specify is the 1x4 vector tp , where the first element indicates the number of iterations

which the algorithm terminates the training process, the third the converging criterion
(sum-squared error goal), and the last being the learning rate. The default value of tpis

[25, 100, 0.02, 0.01].

Other algorithms for training: trainbpa (train feed-forward NN with back-propagation

and adaptive learning), solyerb (design and train radial basis network), and trainim, (train
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feed-forward NN with Levenberg—Marquardt) etc.

[w1,b1,wg, b2,nr,err/=solverp (p,t,tp).

where the algorithm chooses centers for the Gaussians and increases the neuron number

of the hidden layer automatically if the training cannot converge to the given error goal.

So it is also a designing algorithm.

After the NN is trained, one can predict output from input by using simulation

algorithms in terms of the obtained parameters wi, b1, w2, b2, etc.

For feed-forward
network one use

y=stmuff(z,wi by, logsig’, w2, b2, ’logsig ’)

where z is the Input matrix, and Y the predicted output matrix. Similarly,

after a radia]
basis network has been trained one uses

y=stmurb(z,wi b1, w2,b2)

to predict the output.

Once a NN is trained, we can use the formulations in 2.1 of 2.2 together with the

obtained parameters (weights etc.) to setup the network to do prediction anywhere and

not necessarily within the MATLAB environment,
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9. Examples of Application Using MATLAB Neu-
ral Network Toolbox

5.1 A Single Input Single Output Function
The training data set are

p=[0.1,0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0];

1=[0.01, 0.04, 0.09, 0.16, 0.25, 0.36, 0.49, 0.36, 0.25, 0.16/;

A 1-9-1 (a input layer with 1 input, a hidden layer with 9 neurons, and an output
layer with 1 output) feed-forwa;d NN was trained with trainbp. The comparison between
the desired (with symbo] '+’) and the predicted (smooth line) values and the training
history are shown in Figs. 4 (a) and (b) respectively. Another 1-9-6-1 (an input layer
with 1 input, two hidden layer with 9 and 6 neurons respectively, and a output layer with
1 output) feed-forward NN was also trained, and the comparison between the desired
values and the predicted values and the training history are shown in Figs. 5 (a) and (b),

respectively.

By adjusting the learning rate according to the circumstances, adaptive learning
usally can give better results than with a constant learning rate 'speciﬁed before the
training begins, as displayed in F ig. 6 (a) and (b). In Fig. 6 (b), the dotted curve is the

variation of learning rate, and the continuous curve is the variation of error.

5.2 Training of Multiple Variable Mappings

A multi-variable mapping is much more complicated than a single input single
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output function. If we say for the single input single output function in Sect. 5.1, 10 sets
of data can give a somewhat complete description of the relation between the input and
the output, for a mapping with & input variables and one output variable, we will need
10* sets of data to obtain the same degree of completeness of description. That means
the efforts of training a neural network to simulate 2 multiple variable mapping increases

exponentially with the number of Input variables.

For many practical cases, one must obtain a multiple variable mapping from a quite
limited data set. The worse is, the data_are usually randomly distributed in the input
domain, rather than distributed uniformly as in the cases of experiments designed by the
DOF (degree of freedom) method. It will be of interest to know the behaviors of NNs for

such kind of data.
The mapping shown in Fig. 7 is

z = (1 + sin(4zy?)), D = {0<z,y<1}.

[S2R N &1

Firstly we used an 11x11 training data uniformly distributed in the domain D to
train a 2-10-1 feed forward NN, then the NN was used to simulate the mapping on a
91x51 testing mesh uniformly distributed in the domain D. The simulated mapping and
the relative errors, compared to the exact mapping shown in Fig. -7, are given in Figs.
8(a) and 8(b) respectively. It can be noted that around a corner of domain D, ie. (z=1,
y=1), the relative errors have larger values since the abstract values of z have a minimum

at the corner.

Secondly we trained a 2-10-1 NN from a training data randomly distributed in
the domain D with the number of data sets np= 11x11=121. The NN was also used to

simulate the mapping on the 51 x51 testing mesh uniformly distributed in the domain D,
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and the results are shown in F ig. 9. Comparing Fig. 9(b) with Fig. 8(b), we can see
that a NN trained with randomly distributed data has an accuracy at least one order of

magnitude worse than that with uniformly distributed training data.

main D with the number of data sets n = MM and used to simulate the mapping on the
51x51 testing mesh uniformly distributed in the domain D. One example of these results,
n=24, is shown in Fig. 10. The error (the maximum of the 91x51 relative testing errors)
with randomly distributed training data as a function of "1, compared with the results ob-
tained using uniformly distributed training data, is shown in Fig. 11. From these results

the following conclusions can be drawn:

(a)With uniformly distributed training data, the accuracy of she NN is much higher

than that with randomly distributed training data,

data sets decreases, the averaged relative error increases in an inversely proportional way,

and the error deviation increases either.

5.3 A Neural Network to Represent Experimental Data

This is an application of NN to represent experimental data fitting to model a



Only the case of single-angle beam-to-column connections bolted to both beam and
column (Fig. 12) would be reproduced. There are 6 sets of experimental data available,
5 were used for training, and the remaining 1 set for testing. The input data are shown

in Table 1.

Following Ref. 7, a 3-50-50-22 feed-forward neural network is used. The network
has 3 input variables, given in Table 1, two hidden layers of 50 neurons each, and 22
output variables (the first 21 are moments normalized by the largest at different angles
of rotation, as specified in Fig. 5 of Ref. 7, and the last variable is a value reflecting
the largest moment of each set of data, an inverse of the value of the largest moment

multiplying by a constant making sure that result being less than 1).

Results with different choices of training sets or different initialization schemes are
shown in Fig. 13.(a), (b), and(c). Both in (a) and (c) Experiment No.1, 2, 3, 5, 6 are
used as training sets, and No. 4 is used as the testing set. While in (b) Experiment No.1,
2, 3, 4, 6 are used as training sets, and No. 5 is used as the testing set. The difference
between (a) and (c) is that in (a) ‘logsig’ is chosen as the transfer function in using the
algorithm initff to provide initial weights and bias for the training process (the same as
in (b)), while in (c) ’tansig’ is used. In all the three cases 'logsig’ is used as the transfer
function in the training process. The error goal for the training is 0 5E-5, and the number

of iterations for convergence were 12377, 6991 and 17118 respectively, in the three cases.

As shown in Fig. 13, the NN with adequate hidden layers and neurons is flexible
enough to give almost perfect reproduction of the training data. This is anticipated
if the training process is converged to the specified small error goal. But what is of
a great interest is the comparison between the actual and the predicted values for the

testing data sets, the ones which were not used for the training process. We can see, for
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the steel connection example, the NN modeling is not reliable, the predicted result can
either overestimate[as in (a)], underestimate [as in (b)], or give good approximation of
the desired valye [as in (c)]. This is mainly due to the fact that different combinations of
transfer functions are used. As will be seen in the following sections (6.3 and 5.5), when
the transfer function tansig’, instead of logsig’, is used in the algorithm wnitff | together
with “logsig’ used in the training algorithm trainbp, (that s, Formulation JJ instead of
Formulation T in 6.3), the network is more robust to give smooth approximations, and

more importantly, a much better testing accuracy is obtained. Another reason might be

and cover the range of practica] possibilities (especially for the angle thickness).

can improve the performance of the networks. We shal] reproduce the results of the first
two problems with an alm to compare the performances of MATLAB NN Toolbox and
those of the software used in Ref. 8 and Ref 9, and to increase our experiences of dealing

with real structura] problems.

5.4.1 A Pattern Recognition Problem

trained using the bending moment patterns in a simply supported beam subjected to

a concentrated load at severa] different locations. The input variables are the bending
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moments at 10 sections along the span, and the location of the load represents the output
value. As mentioned in Ref. 9, the training data sets in Ref. 8 have some mistakes in

them. The data sets shown in Table 2 are the corrected ones.

We use both multi-layer feed-forward network with backward pfopagation training
and the radial basis function network to attack the problem. A 10-3-1 feed-forward NN
is used, and the results are shown in Fig. 14. With only one hidden layer and 3 neurons
in the hidden layer, we have produced results that are comparable to those in Refs. 8
and 9 achieved using 2 hidden layers, each with 10 neurons. This seems to be because
our neuron number has already been of the order of the number of training data sets (the

latter is 4).

The radial basis NN performed better for this problem. With only 3 iterations
(which means that the MATLAR algorithm solverb has changed the network structure only
3 times, each time increasing a neuron in the hidden layer, until 3 sets of the training data
have been taken as the center vector), it gives results (see Fig. 15) which are comparable
with those obtained from the feed-forward network after thousands of iterations. This is
consistent with the finding that radial basis networks behave well for modeling systems
with low dimension or isolated "bumps” (Ref. 3) ( the pattern of the beam moment

distribution is bump-shaped).

5.4.2 An Ultimate Moment Capacity of a Beam

The second problem is about the design of a simple concrete beam, that is, selecting
the depth of a singly reinforced rectangular concrete beam to provide the required ultimate

moment capacity.
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5.4.2.1 An Multi-Input Single Output Formulation

a set of 10 additiona] patterns were yged ( see Table 3 ip Ref. 8). We used the same
settings for training the network and the same training and testing data. The results are

displayed in Fig. 16(a) as compared with those of Ref. 8 in Fig 16(b).

a simpler relationship, and it was found jp Ref. 9 that by using only five of the patterns

as the training data, the network can produyce Very good predictions. We use the same

Fig. 17 (b).
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The example problem used in Ref. 11 will be solved here by both feed-forward NN
and radial basis function (RBF) NN to show their respective abilities of modeling data

with noises.

A set of 51 points sampled uniformly in the x-direction but with randomly chosen

noises in the y-direction can be generated by the MATLAB code as follows.

p=51;

z=0:.02:1;

sigma=0.15;

y=-5+.4"sin(10*z)+sigma * 5-rand(1,p));

plot(z,y,’c+’)

The true function, y(x)=.5+.4sin(10x), which will be generated with a more dense

set of points and plotted by dashed line, is sampled without noise.

pt=500;

Tt=linspace(0,1,pt);

yt=.5+.4{%sin(10*z) +sigma*(. 5-rand(1,p));
hold on

plot(zt,yt, ’b-")

The comparison of the training points with noises specified above, feed-forward
NN simulation with two hidden layers (1-20-20-1), and the true function is shown in F ig.
18(a). A similar comparison with a RBF NN simulation is shown in Fig. 18(b). We can
see that in both cases that the neural networks give reasonable and smooth simulation of

the true function even though the training data has noise.
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Another set of training points is generated with noises in both x- and y- direction.

This gives an even worse situation for the neural network to deal with.

p=561;

z=0:.02:1;

sigmal=0.01;

sigmal2=0.15;

T=z+sigmal*(.5-rand(1,p));
y=-5+.4%sin(10*c)+sigma2*(. o-rand(1,p));

plot(z,y,’c+’)

Comparison of the results in this case is shown in Fig. 19(a) through (d), where (a)
is about the results by a (1-20-20-1) Feed-Forward NN , (b) is about a RBF NN simulation,
(c) is a summation of the results in (a) and (b), and (d) is about the results by a (1-40-1)
FF NN trained with adaptive learning. Very good results are also obtained by all neura]

network modeling. As in the first case, the RBF neural network gives the best results.

Shown in Fig. 20 is the result from the feed-forward NN with transfer function
combination Formulation (see 6.3 in the following). In this case, it is difficult for
the training to converge, and back-propagation with adaptive learping (that means the
learning rate is adjusted in each epoch) has to be adopted. Moreover, the simulated result
curve is quite rough for both 1 and 2 hidden layer cases. We shall discuss this further in

6.3.

6. On Some Issues of Neura] Network Modeling

6.1 About the Accuracy and Error Goal
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Generally, it is expected that the accuracy of a NN could be better in the case of

"interpolation” than in the case of ”extrapolation” (for Instance, see Figs. 14 and 15).
p g

some influence on the prediction accuracy. It seems that since usually the datg (whether

for training or for testing) is polluted by noise, a very small error goal would not be a good

These have been clearly shown in F ig. 21. In Fig. 21(a) we can see that as a result
of very small error goal, the accuracy of testing is very poor despite a perfect training
accuracy, and in Fig. 21(b) and (c) through the choice of g moderate error goal, both
the testing and training accuracy are of the same order. For the case in Fig. 21(a) the

training time was about 5 times longer.

6.2 Normalization of the Training Data
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is close and less thap 1, say 0.98. If the original values of the input and output are much

less than 1, it should also be normalized and scaled to a value close to 1.

We can see this effect clearly in Fig. 22 (a) and (b). In Fig. 22(a) the ultimate
moment capacity problem (5.4.2.2) Is again solved by multiplying input p by 4 and
output ¢ by 3 so that both the largest values are close to 1. Compared with Fig. 17(a)
(where the number of iterations (epoch) is in thousands) the performance of the NN has
improved, especially over the range of z from 0.16 to 0.19. In Fig. 22(b) the result of a

single input single output problem using the formulation
[wl, b1, w2, b2, ep, tr] = trainim(wl, b1’ logsig', w2, b2 logsig' p,t, tp);

is shown, where we can see that the prediction cannot approach the point that surpasses

1.

The situation can be overcome whep the ’pure’ linear transfer function is used.
This is illustrated in F 1g. 22(c), where the result for the same problem in Fig. 22(b) using

the formulation
[wl, b1, w2, b2,ep, tr] = trainim(wl, b1, logsig’, w2, b2,’purelz‘n',p, t, tp);
is shown.

For the radial basis N N, although there is no such restriction, stil] it is better to scale

the input to and output from such a network around (0,1) for an improved performance. _

6.3 Initialization and Specification of Transfer Function

There are some tricks in using the initialization algorithms. Firstly, as already

mentioned, the initialization algorithm ingtff is a random process, so it is possible that
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training histories of a given problem may be quite different, with one showing a quick

convergence and the other needing thousands of extra iterations.

Secondly, the specification of the transfer function involved in initff and trainbp
has very large influences on the training history and the performance of the network. It
has been found that there are only two combinations of initff and trainbp that are feasible

In practice, as shown below:

Formulation I:

[w1,b1,w2,b2, w3, b3]=initff(p,n1, logsig’,n2, logsig’,t, logsig ’);

[w1,b1,w2,b2,w8,b83, ep,tr/=trainbp(w1,b1, Togsig’, w2,b2, logsig’, w3,b3, logsig “p,t.tp),

Formulation II-

[w1,b1,w2,b2, w3,b3]=initff(p,n1, tansig’,n2, ‘tansig’, t, tansig’);

[wi,b1 ,w2,62,w3,b3,ep,tr]:trainbp(wl b1, logsig’, w8, b2, logsig’, w3,b3, logsig’,p,t,tp);

Formulation I usually makes the training process oscillate (the error-epoch line
quite rough) but approach the error goal more directly while the error-epoch line of
Formulation II is usually quite smooth but at the later part of training the error decreases

very slowly. See Figs. 4(b), 5(b) (Formulation IT ), and Fig. 3(a), 3(b) (Formulation I )

As to the performance of a NN , althoﬁgh Formulation I can predict the output in
the training data set quite well, it sometimes gives very poor testing results outside the
training data. See Fig. 23 and F ig. 13 (a) and (b). Further, from Fig. 18 to 20, we can
see while Formulation I gives quite robust and smooth performance Formulation I, in

contrast, gives unstable and rough predictions when the training data includes noise.
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So we prefer Formulation 11

6.4 NN Structural Problem

The number of the hidden layers and the number of neurons in each layer determine
the freedom or dimension of a NN. Generally speaking, more hidden layers and more
neurons in the layers mean a larger flexibility of the NN, and accordingly smaller error

goal can be specified.

The relation between the training time and the numbers of hidden layers and
neurons is a complicated one. A more complex NN (with more hidden layers and neurons)
certainly needs more execution time in each training iteration. But a network with more

layers or neurons may need less iterations for training to reach the desired error goal.

From Fig. 24 (a) through (h), we can say the adequate degree of freedom of a NN
(total number of neurons) is about the same order of the number of the training data sets.
More hidden layers and neurons not only increase the training effort, but sometimes also

give poor performance for the network.

7. Cross-Validation Algorithms and Some Obser-
vations

Cross-validation is a standard tool in statistics (Ref. 1). This technique can be
used to optimize neural network structural parameters, i.e. numbers of hidden layers and
neurons of each hidden layer etc. It can also be utilized to determine the proper training
epoch in order to avoid over-training, the case that usually occurs when the number of

training iteration is too high, with the Symptom that errors for the training data approach
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zero while those for the testing data increase excessively.

When a network is being trained using the cross-validation technique, the training
data is divided into two subsets, one subset being used for training of the network, the
other being used for validation (i.e. testing). The validation subset is typically 10 to 20

percent of the training set.

For the case of single output, the error can be defined as the following combined

error

s

n 1/2
Ecom = (nr ins (Z(tri - sri)2 + Z(tsi = Ssi)z))

i=] i=1

where n. and n, are numbers of data sets in the training and testing subset respectively, ¢,
and ¢, are the target value for the training and testing subset, and s, and Ss are the values
predicted by the network for the training and testing subset. Other two error measures

are:

1,8 1/2
Ey = (n-, (Z(tri - Sri)2)>

=]

and

e 1/2
Ets = <ni( (tsi = 531’)2))
s iz

are also of interest and so is the error ratio E./E,,.

MATLAB algorithms cvtrain, cvtrain! are available to train Feed-forward NN using

cross-validation. They are invoked in the following format
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[w1,b1,w2,b2,u3, b3]=cvtrain(nl,n2,ic, dn,mn,p,t);
or
[w1,b1,w2,b2,w8,b8]=cuvtrain1 (n1,n2,ic,dn,mn,pr,tr,ps, ts);

where the training is accomplished by invoking trainbp or trainbpa, and descriptions of
the parameters can be found in their help message (see Appendix;. The only difference
between cvtrain and cvtrain? is that in the former the testing subset is determined in the
alogorithm in a random manner and takes about 20 percent of the training set, while in

the latter they are provided beforehand as pr, tr, ps, ts.

Several calculations have been carried out for two problems. The first problem is
the example problem used in 5.5, now with 21 points as training subset and 20 points as
testing subset, and the noise level still being at sigma = 0.15. The second is that in the
ultimate moment capacity problem (5.4.2.1), with the 21 sets of original training data
as training subset, and the 10 sets of testing data as testing subset. Feed-forward neural
networks with different configurations are used and some of the results are displayed in
Figs. 25 through 30. It should be noted that for the first problem since there exists a
real function, we can have two kinds of errors, one based on the noise polluted training
set, another based on points on the real function curve. Since what we want to mode] is
the exact mapping in terms of the real function, and in practical problems this mapping
1s usually nowhere to be found, the error based on real function should be paid more

attention.

Hereafter we look through the results, and some conclusions can be drawn, which

are true at least for the specific problems.
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combined error tends to be minimum, ag can be seen clearly in Figs.
25(a), 26(a), 27(a) and 30(a), and partly in Figs. 28(a) and 29(a). The
optimum epoch for the error based on the rea) function is Jess than
that for the error baseqd on the training data, the former being about
one half of the latter. The optimum epoch number decreases as the

network complexity increases,

vided the network neuron number js large enough, as shown in Fig.
26(c), 27(c), 29(c), and 30(b). This results in the ratio E,, /Ey, based
on training data to increase drastically, as in Fig. 26(b), 27(b), and
29(b). But the ratio E,/E,, based on the real function is always in
the vicinty of 1.0 ang very stable (see Fig. 25(b) through 29(b)). The
latter is expected since both E;; and E,, here represent the average

difference between the network generalization and the reg] function.

As to the problem of network complexity, at least for the choices having
been made, it seems that the best performance is given by a network
having about the Same number of neurons a5 that of the training data
sets, a fact mentioned earlier. This observation is based on the assump-
tion that the rea] mapping is smooth and is unaffected by the noise in

the training and testing data.

Cross-validation technique can be used to investigate a lot of problems

in NN training. But it is time-consuming and not mature enough to
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be incorporated into a routine training process. A tentative standard
for stop to avoid over-training can be E,;,/E, =2 and Epoch>mn (a
minimum training number). But this strategy is not so successful (for

instance, it is not clear how to determine mn).

Over-training is not so serious a problem as it seems to be. At least
beyond the optimum epoch the combined error only increases slowly.
As to the error ratio of testing over training, it is almost a constant (1.0)
if it is based on the real mapping and if the training and testing data
are uniformly noise-polluted. This means that training epoch should
be high enough. Under-training is worse than over-training and should

be avoided.

From the figures it can be seen that for the example problem the train-
ing of network is locally unstable with one hidden layer while not with
two hidden layers. From Fig. 30(a) and some other results not included
here, we can see the situation for the ultimate moment capacity prob-
lem in 5.4.2.1 is the same. Obviously, in some way networks with two

hidden layers are superior to those with only one (Ref. 1).

If a testing data is incorporated into a cross-validation process to train
a network, it contributes (at least indirectly) to the training and loses

its status as independent testing data.

8. Methods of Obtaining Continuum Models

A lot of methods have been used to develop continuum models to represent com-
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its continuum models. Ap Important observation is that the continuum model is not
unique, and determining the continuum model for g given complex structure is inherently
ill-posed therefore diverse approaches can be used. This cap be clearly shown ip the

following example of determining continuum models for a lattice structure.

The single-bay double-laced lattice structure shown in Fig. 31 has been studied
in Ref. 12, 13 and 14 with different approaches to the continuym modeling. This lat-
tice structure with repeating cells can be modeled by a continuum beam if the beam’s

properties is properly provided.

Cross section for the beamlike lattice, (2)expressing the strains in the individual elements

in terms of the strain tomponents in the assumed coordinate directions, (3)expanding each
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Lee put forward a method that he thought to be more straightforward (Ref. 14).
He used an extended Timishenko beam to model the equivalent continuum beam. By
expressing the total strain and kinetic energy of the repeating cell in terms of the dis-
placement vector at both ends of the continuum model, and equating them to those
obtained through the extended Timishenko beam theory, he got a group of relations. The
number of these relations, 2NV (1+2N), where N is the degree of freedom of the contnuum
model, is usually larger than that of the equivalent continuum beam properties to be
determined. Lee then introduced a procedure in which the stiffness and mass matrices for
both the lattice cell and the continuum x—nodel are reduced and so is the number of rela-
tions. Yet how to reduce the number of relations to be equal to the number of unkowns

seems depend on luck.

All the above three methods give close results for the continuum mode] properties,

and the continuum models also generate promising results for the lattice structure.

9. An Example of NN Modeling of Continuum
Models

Emphasizing the application of NN, we choose an approach similar to that in Ref.
13, that is, to derive the properties of the beam by investigating the force-deformation
relationships of the repeating cell in certain boundary conditions. The approach is illus-
trated in Figs. 32 (a), (b) and (c), where the beam’s axial rigidity E'A, bending rigidity
EI, and shearing ridigity GA are calculated respectively by using the results of finite
element analysis of the repeating cell in different load conditions. Concerning the finite

element analysis of 3-D lattice structures one can consult Ref. 15.

There are five parameters of the repeating cell for the lattice structure in Fig.
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31 that can be varied, the longitudinal bar length L., the batten length L,, and the
longitudinal, batten and diagonal bar area, A,, A, and Ay Generally, a function with
more variables will be more complex and it will be more difficult for a neural network
to simulate its performance. A NN with more input variables needs much more training
data since in the training data each variable should vary separately. As can be shown in

the following, this kind of ”coarse” training data pose an obstacle to most of the training

algorithms.

Three scenarios were investigated, with the number of input variables set to be 2,

3 and 4 respectively.

9.1 Neural Network with 2 Input Variables

The input variables are L. and A,. The number of training data sets is 400=20x 20.
The number of testing data, most of which are located at centers among the training data
mesh, is also 400=20x20. Part of the results, about GA, is shown in Fig. 33. Simulations
on the testing data and the relative errors of a FF NN (2-10-1) trained with Levenberg-

Marquardt (trainim) are shown in Figs. 33 (b) and (c). Results of a RBF NN doing the

same job are shown in Figs. 33 (d) and (e).

We could not say that FF is superior over RBF just because its testing accuracy
shown in Fig. 33 (c) is higher than RBF’s shown in Fig. 33 (e). We can adjust the
training criterion to change a RBF NN'’s behavior and it should be noted that what is

shown in Figs. 33 (d) and (e) are not RBF NN’s best performances.

9.2 Neural Network with 3 Input Variables
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The input variables were chosen as L., A, and Ag. The number of training data
sets is 343=7x7x7. For this case, the effectiveness of different training algorithms can be
seen clearly in Fig. 34. When ordinary back-propagation training algorithm, l.e. trainbp
is used, it is very hard to train the NN to the error level of 107!, as shown in Fig. 34 (a).
When the adaptive learning technique is included, an improvement can be made, but it is
still hard to reach the 10~2 error level, as can be seen in Fig. 34 (b). Now if the algorithm
with Levenberg-Marquardt (trainim) is used, it is quite easy to push the training error

level to the order of 104,

The improvement by trainim is really amazing. All the training algorithms carry
out an optimization process. While trainbp uses steepest-descent method with constant
step size, trainbpa accelerates the process by adjusting the step size. On thé other hand,
trainlm adopts a kind of modified Newton’s Methods, which adjusts both the searching
direction and the step size. Concerning the optimization methods one can consult Ref.

16.

Samples of the NN simulation results are given in Table 3, where the desired values

and values obtained by Noor et al (Ref. 12) and Lee (Ref. 14) are also presented.

9.3 Neural Network with 4 Input Variables ,

The input variables were chosen as Lc, Ac , A; and Ay. The number of training
data sets is 625=5x5x5x5. For this case only trainlm could trair a FF NN that could

give resonable results. Samples of the NN simulation results are given in Table 4.
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Appendix Help messages for MATLARB Algorithms cv

>> help cvtrain
[wl,bl,w2,b2,w3,b3]=cvtrain(nl,n2,ic,dn,mn,p,t)
CROSS-VALIDATION TRAINING OF FEED-FORWARD NETWORK BY B

Input Parameters:
nl - Neuron number of the firgt hidden layer.
n2 - Neuron number of the Second hidden layer (if no
ic - 1: without adaptive learning. 2. with adaptive

- Minimum training number.
m by n matrix of input vectors.
- 1 by n matrix of target vectors.
= Number of input variables.
= Number of training data sets.
=~ Number of output variables.
Return Parameters:

wi - network weights.

bi - network biases.

Hbaﬁ'dgg.-

> nelp cvtrainil

[wl,bl,w2,b2,w3,b3]=cvtrainl(nl,n2,ic,dn,mn,pr,tr,ps,t
or (with Pre-training)
[wl,bl,w2,b2,w3,b3]=cvtrainl(nl,n2,ic,dn,mn,pr,tr,ps,t

CROSS~-VALIDATION TRAINING OF FEED-FORWARD NETWORK BY B

Input Parameters:
nl - Neuron number of the first hidden layer.
n2 - Neuron number of the second hidden layer (if no
iec - 1:; without adaptive learning. 2. with adaptive
dn - Number of training for each batch.
mn - Minimum training number.
Pr - m by nr matrix of input vectors for training.
tr - 1 by nr matrix of target vectors for training.
PS - m by ns matrix of input vectors for testing.
ts - 1 by ns matrix of target vectors for testing.
m - Number of input variables.
nr - Number of training data sets.
ns - Number of testing data sets.
1 - Number of output variables.
wi - network weights (for cases with Pre-training).
bi - network biases (for cases with pPre-training),
Return Parameters:
wi - network weights,
bi - network biases.
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Table 3 Comparison of Continuum Mode
Lattice Repeating Cell

Features of the cell: F'=7.17 x 10°N/m?, L, = 5.0m, A, = 6 x 10~5m?
Variables specified: L, = 7.5m, 4, = 8 x 107°m?, Ay =4 x 10~5m?2

| Properties for a

present present present
present (FF simulated, (RBF simulated, (FF simulated, | U. Lee | Noor
trained by trainbpa, 3 variables) trained by trainlm, ct al
3 variables) 3 variables)
EA (10°N) 2.659 2.60 2.66 2.656 2.71 | 2.53
GA (10°N) 2.183 2.24 2.17 2.186 2.2 2.2
EI (10'N -m?) | 8.147 8.08 8.17 8.148 820 | 8.01

PN T Mt
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Variables specified: L, = 7.5m,

Features of the cell: g — 7.17 x 1010

N/m? L, = 5.0m
A.=8x 107%m2?, 4

d=4x10"5m2 Ag =6 x 10~5,,2

present

(FF simulated, U. Lee | Noor
trained by trainim, et al

4 variables)
é.é.ﬁiﬁﬁ
éﬂﬁ!ﬁgﬁ
R\ R Y Wy e
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Fig.4 (a) 1-9-] feed-forward NN trained with back-propagation:
comparison between simulation (solid line) and desired value (‘+’)
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Fig.4 (b) 1-9-] feed-forward NN trained w
training history

ith back-propagation:
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Fig.5 (b) 1-9-6-] feed-forward NN trained with back
training history
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Fig.6 (a) 1-9-6-1 feed-forward NN trained with BP and adaptive learning:
comparison between simulation (solid line) and desired value (‘+’)
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Fig. 8(a) Simulated mapping by a 2-10-1 NN trained by 11x11 uniformly
distributed data
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Fig. 10(a) Simulated mapping by a 2.10.1 NN trained by 24 sets of
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Fig. 13(c) Repmducing results of [7] by 4 3-50-50-22 NN Comparison of
€Xperimental resy|tg (lines) an( simulation (¢'. training, "4 testing)
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Beam Loag Problem (Feed Forwarg Network 10-3-1, trained by pattern 1 ~4)
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Fig. 19(c) Summation of network results from Fig. 23(a) and (b)
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Fig. 20 Feed—forward NN with Back
Transfer Function Combination Formuy;

(@) One hidden layer ( 1-49.1)
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Fig. 21(a) Solving the beam ultimate moment capacity
problem ( 5.4.2.1) with different schemes and results:
5-50-50-1 NN Very small error goal, epoch~ 104
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Fig. 21(b) Solving the problem in 9.4.2.1 with different
schemes and results: 5-10-10-1 NN\ quite large error goal,
epoch=2000
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Fig. 21(c) Solving the problem in 5.4.2.1 with different
schemes and resylts: 5-20-20-1 NN, quite lar

ge error goal,
epoch=2000 '
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Fig. 22(a) Normalization of input and output variables: the
problem in 5.4.2.2 1-9-1, 4*p. 3*¢. epoch=468
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Fig. 23 Solvi Ing the probje

m1n542
NN.

2 by Formula 1. 1. 9-1
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Fig. 24(a) Solving again the problem in 5.4.2.2. 1-5-

I NN,
error goal=10"%, epoch=15117

o: desired +: predicted *: training data
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Fig. 24(b) Solving again the problem in 5.4.2.2: 1.6-1 NN,

error goal=10-%. epoch=9155
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Fig. 24(c) Solvi mg again the problem in 5.4.2.2: 1-9-1 NN,

error goal=10"%, epoch=5326

o: desired +: predicted *: traninig data
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Fig. 24(d) Solving again the problem ip 9.4.2.2:

1-11-1 NN,
error goal=10"%, epoch=2401
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Fig. 24(e)

Solving again the problen, In 5.4.2.2: 1.14.
€rror goal=10-6. epoch=497
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Fig. 24(h) Solving again the problem in 5.4.2.2: 1-19.19.1
NN. error goal=10-6. epoch=302]
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Fig. 25(a) Training History for the Toy Problem by a (1-20-1) NN:
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Fig. 25(b) Training History for the Toy Problem by a (1-20-1 ) NN:

Ratios of Testing Erpor Over Training Eppop
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Fig. 25(d) Results for the Toy Problem by a (1-20-1) NN: Comparison of
the Prediction, Training and Testing Subsets, and the Real Function
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Combined Error

Fig. 26(a) Training History for the Toy Problem by a (1-50-1) NN:
: Combined Errors
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Fig. 26(b) Training History for the Toy Problem by a (1-50-1) NN:

Ratios of Testing Error over Truinine Error

Error based on: — Training data —- Real] function
30 ¥ ¥ T I

4 ¥ ¥ I

3sting)
— K N
wn o
T T

Error Ratio (Training/Testin
= )
T

_——--—.._—__.._._---——_—-—_______.___—_-—

0 1000 2000 3000 4000 5000 6000 77000 8000
Epoch

91

9000



Fig. 26(c) Results for the Toy Problem by a ( 1-50-1) NN:
Comparison of the Prediction and the Target Values
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Fig. 26(d) Results for the Toy Problem by a( 1-50-1) NN: Comparison of
the Prediction, Training and Testing Subsets
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Y Problem by a (I-100-1) NN:
Combined Errors

Error based on;:

— Training data —_ Real function
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Fig. 27(b) Training History for the Toy Problem by a (1-100-1) NN:
Ratios of Testing Error over Training Eyror
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Fig. 27(d) Results for the Toy Problem by a (I-100-1) NN: Comparison of
the Prediction, Training and Testing Subsets
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Fig. 28(a) Training History for the Toy Problem by a ( 1-20-20-1) NN:
Combined Errors
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Fig. 28(c) Results for the Toy Problem by a (I-20-20-1) NN:
Comparison of the Prediction and the Target Values
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Fig. 29(a) Training History for the Toy Problem by a (1-50-50-1) NN:
Combined Errors
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Fig. 29(c) Results for the Toy Problem by a (1-50-50-1) NN:
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Fig. 30(a) Traim'ng History for Probjem 54.2.1 by a (5~50-50-1) NN
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( | longitudinal bar diagonal bar
L g

Geometry of repeating cells of a
single-bay double-laced lattice
structure

Length of longitudinal bars: L.
Length of battens: L,

Length of diagonal bars: Ly= (L2 + LZ) 2
Areas: A., A, A,

Fig. 31
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Evaluate Continuum Mode] Properties
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Fig. 32 (a)
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Evaluate Continuum Model Properties

Bending Rigidity EI:
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Fig. 32 (1)
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Fig. 33 GA = f(A,, L,): (b) FF simulation op testing data
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Fig. 33 G4 = f(Ac, L,): (d) RBF simulation op testing data
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Training for 20000 Epochs
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